ADAS & Autonomous Vehicle International
  • News
    • A-L
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
    • M-Z
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    • January 2025
    • September 2024
    • April 2024
    • January 2024
    • Subscribe
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
  • News
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. Subscribe
    Featured
    April 15, 2025

    In this Issue – April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    November 29, 2024

    In this Issue – September 2024

    July 23, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
  • Awards
    • About
    • 2025 winners
    • Judges
  • Webinars
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
ADAS

NC State University engineers propose fourth traffic light for autonomous vehicles

Callum Brook-JonesBy Callum Brook-JonesFebruary 8, 20235 Mins Read
Share
LinkedIn Twitter Facebook Email

Transportation engineers at North Carolina State University in the USA have proposed a fourth, white light at traffic lights which would enable autonomous vehicles to help control traffic flow and which would also let human drivers know what is happening.

Having conducted computational simulations, the university’s engineers have found the approach greatly improves travel time when moving through intersections and say it can help to reduce fuel consumption, too.

“This concept we’re proposing for traffic intersections, which we call a ‘white phase,’ taps into the computing power of autonomous vehicles (AVs) themselves,” said Ali Hajbabaie, author of the paper and an associate professor of civil, construction and environmental engineering at NC State. “The white phase concept also incorporates a new traffic signal, so that human drivers know what they are supposed to do. Red lights will still mean stop. Green lights will still mean go. And white lights will tell human drivers to simply follow the car in front of them.”

The team’s white light concept relies on AVs being able to communicate wirelessly with one another, and also with the computer controlling the white traffic signal. If a certain number of AVs reach the intersection at the same time, the white light is activated. This signals to humans that AVs will now conduct their own movements through the intersection to make traffic movements more efficient. Vehicles being controlled by humans will be required to follow the vehicle in front of them, in terms of turning or stopping and starting. If there are too few AVs, then the traffic lights work conventionally.

“Granting some of the traffic flow control to the AVs is a relatively new idea, called the mobile control paradigm,” said Hajbabaie. “It can be used to coordinate traffic in any scenario involving AVs. But we think it is important to incorporate the white light concept at intersections because it tells human drivers what’s going on, so that they know what they are supposed to do as they approach the intersection. And, just to be clear, the color of the ‘white light’ doesn’t matter. What’s important is that there be a signal that is clearly identifiable by drivers.”

The “white phase” traffic intersection concept was first introduced by the team in 2020. This initial concept, however, relied on a centralized computing approach, with the computer controlling the traffic light being responsible for receiving input from all approaching AVs, making the necessary calculations, and then telling the AVs how they should proceed through the intersection.

“We’ve improved on that concept, and this paper outlines a white phase concept that relies on distributed computing – effectively using the computing resources of all the AVs to dictate traffic flow,” said Hajbabaie. “This is both more efficient, and less likely to fall prey to communication failures. For example, if there’s an interruption or time lag in communication with the traffic light, the distributed computing approach would still be able to handle traffic flow smoothly.”

To test the performance of the distributed computing white phase concept, the researchers made use of microscopic traffic simulators. These simulators enable highly complex computational models to be designed to replicate real-world traffic, down to the behavior of individual vehicles. Through the use of these simulators, the team was able to compare traffic behavior at intersections with and without the white phase, and how the number of AVs involved influenced that behavior.

“The simulations tell us several things,” said Hajbabaie. “First, AVs improve traffic flow, regardless of the presence of the white phase. Second, if there are AVs present, the white phase further improves traffic flow. This also reduces fuel consumption, because there is less stop-and-go traffic. Third, the higher the percentage of traffic at a white phase intersection that is made up of AVs, the faster the traffic moves through the intersection and the better the fuel consumption numbers.”

If only 10% to 30% of traffic at the lights was made up of AVs, however, the simulations found there were relatively small improvements in traffic flow. As the percentage of AVs at the white phase intersections was increased, so did the traffic flow.

“That said, even if only 10% of the vehicles at a white phase intersection are autonomous, you still see fewer delays,” commented Hajbabaie. “For example, when 10% of vehicles are autonomous, you see delays reduced by 3%. When 30% of vehicles are autonomous, delays are reduced by 10.7%.”

The engineering team acknowledges that AVs are not ready for the distributed computing approach yet and the researchers are aware that governments are not going to install new traffic lights at every intersection in the near future.

“However, there are various elements of the white phase concept that could be adopted with only minor modifications to both intersections and existing AVs,” explained Hajbabaie. “We also think there are opportunities to test drive this approach at specific locations.

“For example, ports see high volumes of commercial vehicle traffic, for which traffic flow is particularly important. Commercial vehicles seem to have higher rates of autonomous vehicle adoption, so there could be an opportunity to implement a pilot project in that setting that could benefit port traffic and commercial transportation.”

The paper, titled White Phase Intersection Control Through Distributed Coordination: A Mobile Controller Paradigm in a Mixed Traffic Stream, is published in IEEE Transactions on Intelligent Transportation Systems. First author of the paper is Ramin Niroumand, a PhD student at NC State; the paper is co-authored by Leila Hajibabai, an assistant professor in NC State’s Edward P Fitts Department of Industrial and Systems Engineering.

Share. Twitter LinkedIn Facebook Email
Previous ArticleRoboSense lidar to provide safer self-driving capabilities for Toyota vehicles
Next Article Hyperview selects Ambarella’s CV3-AD automotive AI central domain controllers to enhance autonomous functions

Related Posts

Robo-Taxis

WeRide collaborates with RTA and Uber to launch pilot operations

June 16, 20253 Mins Read
ADAS

Nvidia Drive full-stack autonomous vehicle software rolls out

June 13, 20253 Mins Read
Testing

Tier IV launches autonomous test vehicle development kit

June 13, 20252 Mins Read
Latest News

WeRide collaborates with RTA and Uber to launch pilot operations

June 16, 2025

Aurrigo founder David Keene receives MBE for the decarbonization of airports

June 13, 2025

WATCH NOW: Driving performance, efficiency and reliability – material solutions for vehicle domain controllers

June 13, 2025
FREE WEEKLY E-NEWSLETTER

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • Facebook
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT