ADAS & Autonomous Vehicle International
  • News
    • A-L
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
    • M-Z
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    • January 2025
    • September 2024
    • April 2024
    • January 2024
    • Subscribe
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
  • News
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. Subscribe
    Featured
    April 15, 2025

    In this Issue – April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    November 29, 2024

    In this Issue – September 2024

    July 23, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
  • Awards
    • About
    • 2025 winners
    • Judges
  • Webinars
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
Features

Measuring motion sickness in driverless cars in Michigan

Opinion WritersBy Opinion WritersSeptember 12, 20194 Mins Read
Share
LinkedIn Twitter Facebook Email

What good is a driverless car if riding in it makes you nauseous?

Up to one-third of Americans experience motion sickness, according to the National Institutes of Health. In a car, the condition tends to flare when you’re a passenger rather than a driver, and when you’re engaged in something other than looking out the window, such as reading or using a handheld device. This sizeable segment of society stands to miss out on some of the key benefits of self-driving technology.

“One of the great promises of AVs – to give us back time by freeing us from driving – is at risk if we can’t solve the motion sickness problem,” says Monica Jones, an assistant research scientist in the Biosciences Group at the University of Michigan Transportation Research Institute (UMTRI). “If it’s not mitigated in some way, motion sickness may affect people’s willingness to adopt driverless cars.”

Jones is the lead investigator on a one-of-a-kind research project to identify and quantify motion sickness in passenger vehicles. Jones’ interest is not purely academic. She’s coped with motion sickness since she was a child and is the primary driver for her family today because of it.

The research team has developed a repeatable and reliable testing protocol for evaluating specific real-world driving maneuvers and passenger activities that make people carsick. No such methodology existed before. The study is the first to conduct a large-scale comparison of reading task performance and urban acceleration levels on motion sickness response in a passenger vehicle. A white paper about the protocol was published by Mcity.

Why we need a motion sickness testbed

The factors that cause motion sickness in cars are not well understood today.

“Very few studies have been conducted in cars; instead, a lot of the work has been done for sea and air transportation modes, performed in driving simulators or on motion platforms,” Jones explains. “These results are not translating very well to road vehicles.”

Beyond that, previous research hasn’t asked the right questions. “A lot of scales that exist in the literature are based on nausea,” Jones adds. “If we design to a vomiting response, we have really missed the mark on AVs. We need to target comfort levels. Can a passenger engage with a handheld device while riding? Can a passenger be productive with their time?”

The testbed: How to make car passengers sick

The team’s protocol defines how to measure the range of sensations passengers experience and identifies the type of conditions that prompt feelings of motion sickness in cars. Researchers put 52 participants through a series of normal driving maneuvers at the Mcity Test Facility on U-M’s North Campus to develop the scripted route, instrumentation and measurement protocol.

The testbed consists of:

  • A 20-minute test drive developed based on data from a separate real-world driving study. On average, it includes 25 braking events, 45 left turns and 30 right turns, and is conducted at both 10-15 mph and 20-25 mph.
  • Tasks done on a handheld mini-iPad. At each speed, passengers complete the test drive once with no task, and again while performing a task. Using restaurant reviews, news articles and local maps, participants answer a range of questions that involve reading comprehension, visual search, text entry and pattern recognition.
  • Sensors that record vehicle acceleration and geospatial location and participant’s physiological response, including sweat, skin temperature and heart rate. Cameras and sensors also record passenger head movement and posture.
  • A new motion sickness rating using a 0-10 scale, with “0” indicating no motion sickness and “10” indicating “Need to stop the vehicle.”
  • An open-ended conversation during the test drive. Once every two minutes or whenever they feel a change, participants describe sensations in their own words, in order to more specifically capture the effects of motion sickness. For each sensation, participants rate the intensity as mild, moderate or severe.

Toward a less queasy future

With the protocol, the researchers hope to develop a nuanced mathematical model of motion sickness – one that automakers can use to build products that operate below the threshold. Data from this testbed could inform decisions like how driverless cars brake and accelerate during turns, for example, or how the seating area and windows are arranged. Different control algorithms and car concepts can be tested and measured, apples-to-apples.

“We have found that passenger responses are complicated and have many dimensions,” Jones said. “Applications of this testbed will result in the data we need to identify preventative measures and alleviate motion sickness in AVs.”

Mcity is a public-private partnership based at U-M that is working to advance connected and automated vehicles for the benefit of society. Mcity and UMTRI provided funding and other support for Jones’ research.

Article written by Nicole Casal Moore and Cara Gonzalez, University of Michigan

Share. Twitter LinkedIn Facebook Email
Previous ArticleAn insight into the University of Michigan’s work on motion sickness in AVs
Next Article In this Issue – October 2019

Related Posts

Features

ASAM shares updates on its positioning for SDV, AI and open-source at Technical Seminar

April 14, 20259 Mins Read
Safety

The potential impact of ADAS on hospital admissions and healthcare expenditures

March 27, 202511 Mins Read
Features

SPONSORED ARTICLE: Material solutions for vehicle domain controllers

February 27, 20254 Mins Read
Latest News

WeRide collaborates with RTA and Uber to launch pilot operations

June 16, 2025

Aurrigo founder David Keene receives MBE for the decarbonization of airports

June 13, 2025

WATCH NOW: Driving performance, efficiency and reliability – material solutions for vehicle domain controllers

June 13, 2025
FREE WEEKLY E-NEWSLETTER

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • Facebook
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT