ADAS & Autonomous Vehicle International
  • News
    • A-L
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
    • M-Z
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    • January 2025
    • September 2024
    • April 2024
    • January 2024
    • Subscribe
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
  • News
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. Subscribe
    Featured
    April 15, 2025

    In this Issue – April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    November 29, 2024

    In this Issue – September 2024

    July 23, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
  • Awards
    • About
    • 2025 winners
    • Judges
  • Webinars
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
Features

JLR’s Cortex Project and the future for off-road autonomy

James BillingtonBy James BillingtonSeptember 19, 20189 Mins Read
JLR Project Cortex
JLR Project Cortex
Share
LinkedIn Twitter Facebook Email

The majority of the motoring world may be focusing on getting self-driving cars onto the road, but an effort to take autonomy onto alternative terrain is also well underway.

Drive settings, gear selection and maneuvering could all one day be handled by a computer. The aim, however, isn’t to take the fun out of off-roading, but to help develop smarter and safer AVs, whatever the weather.

This is the goal for Land Rover’s Cortex project, which is a bid to take learnings gleaned from the development of on-road autonomy, and apply it to alternative terrain. Using a 5D visualization system, the Cortex initiative, it is hoped, will deliver a car that can drive itself in any climatic condition, dealing with dirt, rain, ice, snow and fog. It also aims to surmount obstacles of infinite shape and size, challenging gradient changes, rock crawls or water hazards, and the lack of road markings and signs – hindrances that can give even the most seasoned off-roader cold sweats.

“We are working on a range of connected and autonomous vehicle technologies that will ensure our vehicles remain the most capable on- and off-road,” says Nigel Clarke, senior manager of Land Rover’s Level 5 All Surface Advanced Sensor department, and leader of the Cortex project.

Lessons learned from this project will also help Land Rover produce vehicles that can handle on-road driving in potentially perilous situations such as when road signs and markings are faded or missing, and when sensors are covered by dirt.

“We are developing a world-first 5D data technique, which combines acoustic, video, radar, light detection and distance-sensing data in real time,” explains Clarke. “This means the car has more awareness of the environment it is in, compared with on-road trials. Machine-learning techniques are being used to help the car interpret this vast amount of data, so that it can behave in an increasingly sophisticated way and handle any weather condition or terrain.”

Military maneuvers
Although Land Rover has only just begun to show its autonomous off-roading hand, others have been working on the technology for more than a decade. DARPA, the Defense Advanced Research Projects Agency of the US Department of Defense, kick-started the development of off-road autonomy with the Grand Challenge, back in 2004.

DARPA challenge
DARPA challenge

With a US$1m prize on offer, teams were invited to design and build a vehicle that could autonomously navigate a 142-mile (230km) course through the desert from Barstow, California, to Primm, Nevada. This may sound ambitious even by today’s autonomous standards – and indeed it was. The most successful of the competition’s 15 finalists managed just 7.5 miles (12km).

However, it wasn’t long before passenger car manufacturers took interest. Volkswagen entered the DARPA Grand Challenge in 2005 with Stanford University, fielding a modified Touareg SUV called Stanley against 22 other finalists. Volkswagen and Stanford won the competition, completing the slightly shortened 132-mile (212km) course in six hours and 53 minutes.

As with today’s autonomous cars, the Touareg featured cameras, GPS and roof-mounted lidar, feeding data to computers that constructed a real-time 3D map of the car’s surroundings. Algorithms then worked out which route it should take, selecting good options from bad, with a mere 0.00002% chance of falling for a false positive.

For its development of project Cortex, Land Rover is working on technologies not dissimilar to those seen in the Nevada desert more than 14 years ago, and has chosen to collaborate with the University of Birmingham in the UK – a leader in research into radar and sensing technology for AVs – and Myrtle Software, machine-learning experts based in Cambridge, UK.

The University of Birmingham’s focus is on radar and its ability to function, regardless of rain, fog and poor light, all of which affect the cameras, infrared and lidar. “Our role is to examine different cognitive approaches to radar parameter setting and signal processing,” says Prof. Christopher Baker, chairman of the University of Birmingham’s Intelligent Sensor Systems department.

“Radar parameters can be changed on the fly to enhance the information gathered and improve the perception of the road ahead. This will require more advanced radar than is used today and intelligent interpretation of echoes to understand the imaged scene.”

Baker doesn’t shy away from the challenges faced by the development of off-road autonomy: “This is all weathers, all road types, on and off. Cameras won’t work in poor light or visibility, and infrared cameras and lidar won’t work in rain and fog, so radar has to do the job. Hence our emphasis on this sensor.”

Georgia tech
Georgia tech’s research into off-road autonomy

Researchers at the Georgia Institute of Technology in the USA have also been making developments in this area with its study, Agile Autonomous Driving Using End-to-End Deep Imitation Learning, which trained a deep neural network in order to map high-dimensional observations to the continuous steering and throttle commands of its test vehicle.

“Off-road autonomy poses considerable challenges and characteristics,” explains Evangelos Theodorou, a professor at Georgia Tech and a member of the team on the project. “Vehicles have to move on very uneven terrains with variable morphology and traction conditions that are uncertain and can rapidly change. Also, the ability to predict the future in terms of morphology and terrain conditions is critical.”

Over the past four years the team has been working on a new unified approach to off-road autonomy navigation that solves the problem of when the road ahead is unmapped and when control is at its trickiest.

“Existing methods for autonomous navigation are based on a planning module that generates high-level trajectories using a simplified dynamics model, and a control module that tracks these trajectories. However, these architectures are inadequate for handling the dynamics of vehicles moving off-road and for generating agile behaviors,” says Theodorou.

“A key ingredient of our approach is its ability to take into consideration the full dynamics of the vehicle and its interactions with the environment,” continues Theodorou. “Our algorithms are capable of predicting the future and making adjustments based on these predictions in real time using state-of-the-art methods of stochastic control for decision making, deep learning for perception, and parallel computation for real-time performance.”

Recovery position
Redundancy is an important part of any autonomous system, helping the car navigate correctly when sensors are obscured or damaged. And for off-road autonomy this is especially important, given the increased likelihood of mud, dirt, snow and water covering the vehicle’s ‘eyes’ and ‘ears’.

“The solution to this problem consists of many possibilities,” says Theodorou. “Hardware solutions such as intelligent cleaning systems will play an important role, while algorithms that are able to reconstruct information using corrupted sensory data will be essential. Approaches such as generative adversarial networks can also be of great use. The promise of these approaches is that they recover information sensor failures,” explains Theodorou.

Project Cortex uses cross-learning techniques for situations where one sensor fails – such as when it is covered by mud. Clarke explains how the vehicle’s other sensors then use historically learned knowledge, or divert their attention away from non-critical systems, to allow the car to continue to make progress.

“A lot of work goes into determining the optimal location for sensors to avoid dirt,” he says. “Our water and dirt management team model dirt build-up and thickness to make recommendations to the aerodynamics team to minimize the impact on sensors.”

Although not yet finalized, the Cortex team is currently working to at least three levels of redundancy for any degree of coverage on the car. For example, any three of the vehicle’s six systems – camera, lidar, short-range radar, long-range radar, ultrasonic, GPS – could be taken off-line and it would still be able to drive itself.

Sensors are positioned to avoid damage from stones or gravel, or blockage by mud or water. Radar is mounted to the vehicle roof to capture 3D information on its surroundings, but if that is somehow obscured, the car can refer to a 2D map of its route ahead.

Applications for off-road autonomy
“There is a plethora of commercial applications for autonomous off-road vehicles,” says Theodorou. “These applications range from agriculture, tourism in remote areas, search and rescue missions, defense and, of course, mining.”

Caterpillar autonomous truck
Caterpillar autonomous truck

Applying autonomous off-roading to today’s human-driven vehicles could, Land Rover claims, make drivers feel safer while off-roading and give them greater confidence to navigate trickier situations. Indeed, Clarke suggests that an SUV with autonomous off-roading capabilities could take control of the driving if a driver was nervous in a certain situation: “It could assess the scenario and conduct the driving activity with confidence,” he says.

Land Rover has worked with the Red Cross since 1954, most recently developing a modified Discovery with an aerial reconnaissance drone launching from its roof to provide video of natural disasters. The car maker now has ambitions to use project Cortex for similar work. “Our humanitarian work is of the utmost importance,” says Clarke. “If we can deploy autonomous vehicles in a natural disaster, it might enable more people to be reached more quickly. One of the scenarios we’re placing a lot

of focus on is how the sensing system could cope with floods.”

Although the technology is still in its early days, the prospect of using artificial intelligence – like that employed by Cortex to navigate safely – is something the Red Cross is keen to explore further. “What’s interesting is the possible convergence between humanitarian principles and AI,” says Aarathi Krishnan, global futures and foresight coordinator, International Federation of Red Cross and Red Crescent Societies. “We are really keen to be involved in discussions around how AI is programmed to make decisions, especially those that will impact human lives.”

As with all forms of autonomous mobility, safety and a decent justification for developing and commercializing the technology will be key to Cortex’s long-term success. But even if the finished product remains unclear for now, Land Rover’s desire to take the technology off-road shows how applications for driverless systems extend far beyond the taxis of Silicon Valley.

By Alistair Charlton

Share. Twitter LinkedIn Facebook Email
Previous ArticleGM Super Cruise: How the hands-off driving technology works
Next Article Hyundai Mobis introduces autonomous driving test using 3D game technology

Related Posts

Features

ASAM shares updates on its positioning for SDV, AI and open-source at Technical Seminar

April 14, 20259 Mins Read
Safety

The potential impact of ADAS on hospital admissions and healthcare expenditures

March 27, 202511 Mins Read
Features

SPONSORED ARTICLE: Material solutions for vehicle domain controllers

February 27, 20254 Mins Read
Latest News

Aurrigo founder David Keene receives MBE for the decarbonization of airports

June 13, 2025

Nvidia Drive full-stack autonomous vehicle software rolls out

June 13, 2025

Tier IV launches autonomous test vehicle development kit

June 13, 2025
FREE WEEKLY E-NEWSLETTER

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • Facebook
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT