ADAS & Autonomous Vehicle International
  • News
    • A-L
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
    • M-Z
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    • January 2025
    • September 2024
    • April 2024
    • January 2024
    • Subscribe
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
  • News
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. Subscribe
    Featured
    April 15, 2025

    In this Issue – April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    November 29, 2024

    In this Issue – September 2024

    July 23, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
  • Awards
    • About
    • 2025 winners
    • Judges
  • Webinars
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
Safety

NCSU researchers ditch ‘trolley problem’ to help autonomous vehicles make moral decisions

Anthony JamesBy Anthony JamesDecember 5, 20234 Mins Read
Credit: Samuele Errico Piccarini
Share
LinkedIn Twitter Facebook Email

Researchers have developed a new experiment to better understand what people view as moral and immoral decisions related to driving vehicles, with the goal of collecting data to train autonomous vehicles how to make ‘good’ decisions. The work is designed to capture a more realistic array of moral challenges in traffic than the widely discussed life-and-death scenario inspired by the so-called ‘trolley problem’.

“The trolley problem presents a situation in which someone has to decide whether to intentionally kill one person (which violates a moral norm) in order to avoid the death of multiple people,” said Dario Cecchini, first author of a paper on the work and a postdoctoral researcher at North Carolina State University.

“In recent years, the trolley problem has been utilized as a paradigm for studying moral judgment in traffic,” Cecchini said. “The typical situation comprises a binary choice for a self-driving car between swerving left, hitting a lethal obstacle, or proceeding forward, hitting a pedestrian crossing the street. However, these trolley-like cases are unrealistic. Drivers have to make many more realistic moral decisions every day. Should I drive over the speed limit? Should I run a red light? Should I pull over for an ambulance?”

“Those mundane decisions are important because they can ultimately lead to life-or-death situations,” said Veljko Dubljević, corresponding author of the paper and an associate professor in the Science, Technology & Society program at NC State.

“For example, if someone is driving 20mph over the speed limit and runs a red light, then they may find themselves in a situation where they have to either swerve into traffic or get into a collision. There’s currently very little data in the literature on how we make moral judgments about the decisions drivers make in everyday situations.”

To address that lack of data, the researchers developed a series of experiments designed to collect data on how humans make moral judgments about decisions that people make in low-stakes traffic situations. The researchers created seven different driving scenarios, such as a parent who has to decide whether to violate a traffic signal while trying to get their child to school on time. Each scenario is programmed into a virtual reality environment, so that study participants engaged in the experiment have audiovisual information about what drivers are doing when they make decisions, rather than simply reading about the scenario.

For this work, the researchers built on something called the Agent Deed Consequence (ADC) model, which posits that people take three things into account when making a moral judgment: the agent, which is the character or intent of the person who is doing something; the deed, or what is being done; and the consequence, or the outcome that resulted from the deed.

Researchers created eight different versions of each traffic scenario, varying the combinations of agent, deed and consequence. For example, in one version of the scenario where a parent is trying to get the child to school, the parent is caring, brakes at a yellow light, and gets the child to school on time. In a second version, the parent is abusive, runs a red light, and causes an accident. The other six versions alter the nature of the parent (the agent), their decision at the traffic signal (the deed), and/or the outcome of their decision (the consequence).

“The goal here is to have study participants view one version of each scenario and determine how moral the behavior of the driver was in each scenario, on a scale from one to 10,” Cecchini said. “This will give us robust data on what we consider moral behavior in the context of driving a vehicle, which can then be used to develop AI algorithms for moral decision making in autonomous vehicles.”

The researchers have done pilot testing to fine-tune the scenarios and ensure that they reflect believable and easily understood situations.

“The next step is to engage in large-scale data collection, getting thousands of people to participate in the experiments,” said Dubljević. “We can then use that data to develop more interactive experiments with the goal of further fine-tuning our understanding of moral decision making. All of this can then be used to create algorithms for use in autonomous vehicles. We’ll then need to engage in additional testing to see how those algorithms perform.”

The paper, Moral judgment in realistic traffic scenarios: Moving beyond the trolley paradigm for ethics of autonomous vehicles, is published open access in the journal AI & Society: Knowledge, Culture and Communication. The paper was co-authored by Sean Brantley, a postgraduate student at NC State. The work was done with support from the National Science Foundation, under grant number 2043612.

Share. Twitter LinkedIn Facebook Email
Previous ArticleIn this Issue – January 2024
Next Article Bosch unites infotainment and driver assistance functions in single SoC

Related Posts

ADAS

Nvidia Drive full-stack autonomous vehicle software rolls out

June 13, 20253 Mins Read
Testing

Tier IV launches autonomous test vehicle development kit

June 13, 20252 Mins Read
Safety

Volvo introduces world-first multi-adaptive safety belt

June 11, 20253 Mins Read
Latest News

Aurrigo founder David Keene receives MBE for the decarbonization of airports

June 13, 2025

Nvidia Drive full-stack autonomous vehicle software rolls out

June 13, 2025

Tier IV launches autonomous test vehicle development kit

June 13, 2025
FREE WEEKLY E-NEWSLETTER

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • Facebook
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT