ADAS & Autonomous Vehicle International
  • News
    • A-L
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
    • M-Z
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    • January 2025
    • September 2024
    • April 2024
    • January 2024
    • Subscribe
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
  • News
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. Subscribe
    Featured
    April 15, 2025

    In this Issue – April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    November 29, 2024

    In this Issue – September 2024

    July 23, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
  • Awards
    • About
    • 2025 winners
    • Judges
  • Webinars
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
Simulation

Anritsu develops an automated valet parking test environment for autonomous cars

Elizabeth Baker, web editorBy Elizabeth Baker, web editorNovember 29, 20222 Mins Read
Share
LinkedIn Twitter Facebook Email

Anritsu Corporation has developed a test and simulation environment for automated valet parking (AVP) in collaboration with dSpace and Apposite Technologies.

dSpace’s software-based tool integrates and simulates environment, infrastructure, sensor and vehicle information on a PC. In this demonstration, an AVP System was installed. Vehicle motion control commands (VMC) generated by the AVP system are transmitted to the OEM application, which displays the state of vehicle control, via 5G communication using Anritsu’s 5G base station simulator.

VMC commands pass through the Apposite network emulator on the way to the OEM application. IP data delay and data packet loss are added by the emulator, so vehicle control becomes unstable due to its influence on the OEM application. AVP developers design control systems and networks to keep vehicle control stable.

A virtual vehicle that has received vehicle motion control (VMC) commands across the 5G network automatically drives in a parking lot according to control instructions sent by the parking garage. The base station simulator radio communication test station MT8000A is a test platform that provides network simulation for 5G radio access technology (RAT*6) and provides a development evaluation and certification test environment for automotive use cases such as telematics, infotainment and V2X.

AVP is being developed as an autonomous driving use case that can be deployed in the short term. AVP Type-1 autonomous driving vehicles require expensive high-performance computing and sensing, while AVP Type-2 communication-cooperative vehicles do not require such installations, reducing vehicle costs and making implementation easier. A demonstration exhibition was held as part of the 5GAA*1 Member Symposium event in Malaga, Spain on October 20. AVP Technical Report Version 1.0 was released by 5GAA in June 2022, and a wireless communication (Type-2) operation scheme linked with parking garage infrastructure and users’ smartphones was proposed.

Since AVP Type-2 requires highly reliable end-to-end communications, a test system needs to evaluate the quality of service (QoS) management and impairment effects in the internet protocol (IP) layer. The wireless connectivity environment also needs to be evaluated. The test solution set up a digital twin environment incorporating virtual and real devices. This enables the system tests and certification required to improve the reliability of AVP Type-2 to begin before the actual devices are available.

Share. Twitter LinkedIn Facebook Email
Previous ArticleMost of the world’s population feels autonomous cars are unsafe, research finds
Next Article Baidu Apollo Day: Expanded robotaxi operations and new autonomous driving software and hardware

Related Posts

ADAS

Nvidia Drive full-stack autonomous vehicle software rolls out

June 13, 20253 Mins Read
Testing

Tier IV launches autonomous test vehicle development kit

June 13, 20252 Mins Read
Connectivity

NXP and Rimac collaborate on vehicle control architecture

June 13, 20253 Mins Read
Latest News

WeRide collaborates with RTA and Uber to launch pilot operations

June 16, 2025

Aurrigo founder David Keene receives MBE for the decarbonization of airports

June 13, 2025

WATCH NOW: Driving performance, efficiency and reliability – material solutions for vehicle domain controllers

June 13, 2025
FREE WEEKLY E-NEWSLETTER

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • Facebook
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT