ADAS & Autonomous Vehicle International
  • News
    • A-L
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
    • M-Z
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    • January 2025
    • September 2024
    • April 2024
    • January 2024
    • Subscribe
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
  • News
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. Subscribe
    Featured
    April 15, 2025

    In this Issue – April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    November 29, 2024

    In this Issue – September 2024

    July 23, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
  • Awards
    • About
    • 2025 winners
    • Judges
  • Webinars
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
Sensors

TU Graz researchers develop AI-driven automotive radar filtering system

Lawrence ButcherBy Lawrence ButcherFebruary 24, 20224 Mins Read
Share
LinkedIn Twitter Facebook Email

Researchers at TU Graz in Austria in collaboration with Infineon have modeled an AI system for automotive radar sensors that filters out interfering signals caused by other radar sensors, which they say dramatically improves object detection. Research is apparently now focusing on making the system more robust against weather and environmental influences as well as new types of interference.

“The better the denoising of interfering signals works, the more reliably the position and speed of objects can be determined,” explained Franz Pernkopf from the Institute of Signal Processing and Speech Communication. Together with his team and with partners from Infineon, he has developed an AI system based on neural networks that mitigates mutual interference in radar signals, far surpassing the current state of the art. They now want to optimize this model so that it also works outside of learned patterns and recognizes objects even more reliably.

To this end, the researchers first developed model architectures for automatic noise suppression based on so-called convolutional neural networks (CNNs). “These architectures are modeled on the layer hierarchy of our visual cortex and are already being used successfully in image and signal processing,” said Pernkopf.

CNNs filter the visual information, recognize connections and complete the image using familiar patterns. Due to their structure, they consume considerably less memory than other neural networks, but still exceed the available capacities of radar sensors for autonomous driving.

The goal was to increase efficiency and to this end, the TU Graz team trained various of these neural networks with noisy data and desired output values. In experiments, they identified particularly small and fast model architectures by analyzing the memory space and the number of computing operations required per denoising process. The most efficient models were then compressed again by reducing the bit widths, i.e. the number of bits used to store the model parameters.

The result, they say, was an AI model with high filter performance and low energy consumption at one and the same time. The excellent denoising results, with an F1 score (a measure of the accuracy of a test) of 89%, are almost equivalent to an object detection rate of undisturbed radar signals. The interfering signals are thus almost completely removed from the measurement signal.

Expressed in figures: with a bit width of 8 bits, the model achieves the same performance as comparable models with a bit width of 32 bits, but only requires 218kB of memory. This corresponds to a storage space reduction of 75%, which means that the model far surpasses the current state of the art.

In the FFG project REPAIR (Robust and ExPlainable AI for Radarsensors), Pernkopf and his team will work with Infineon over the next three years to optimize the system.

“For our successful tests, we used data (note: interfering signals) similar to what we used for the training,” explained Pernkopf. “We now want to improve the model so that it still works when the input signal deviates significantly from learned patterns.”

This would make radar sensors many times more robust with respect to interference from the environment. After all, the sensor is also confronted with different, sometimes unknown situations in reality. “Until now, even the smallest changes to the measurement data were enough for the output to collapse and objects not to be detected or to be detected incorrectly, something which would be devastating in the autonomous driving use case,” he said.

The system has to be able to cope with such challenges and notice when its own predictions are uncertain. Then, for example, it could respond with a secured emergency routine. To this end, the researchers want to find out how the system determines predictions and which influencing factors are decisive for this. This complex process within the network has previously only been comprehensible to a limited extent.

For this purpose, the complicated model architecture is transferred into a linear model and simplified. In Pernkopf’s words: “We want to make CNNs’ behavior a bit more explainable. We are not only interested in the output result, but also in its range of variation. The smaller the variance, the more certain the network is.”

Share. Twitter LinkedIn Facebook Email
Previous ArticleAudi teams up with Verizon to provide 5G-enabled vehicles
Next Article NCAR to investigate impact of weather conditions on autonomous electric vehicles

Related Posts

Safety

Bitsensing and IKIO to deploy AI-based traffic monitoring in India

June 9, 20253 Mins Read
Sensors

Mobileye imaging radar chosen by global auto maker

June 4, 20253 Mins Read
AI & Sensor Fusion

Researchers develop self-powered artificial synapse that mimics human color vision

June 2, 20254 Mins Read
Latest News

MOIA unveils series production ID. Buzz AD for autonomous mobility services

June 17, 2025

WeRide collaborates with RTA and Uber to launch pilot operations

June 16, 2025

Aurrigo founder David Keene receives MBE for the decarbonization of airports

June 13, 2025
FREE WEEKLY E-NEWSLETTER

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • Facebook
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
    • 2026 Media Pack
    • 2025 Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT