ADAS & Autonomous Vehicle International
  • News
    • A-L
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
    • M-Z
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    • January 2025
    • September 2024
    • April 2024
    • January 2024
    • Subscribe
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
LinkedIn Facebook Twitter
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
  • News
      • ADAS
      • AI & Sensor Fusion
      • Business
      • Connectivity
      • Cybersecurity
      • Expo
      • HMI
      • Last-mile delivery
      • Legislation & Standards
      • Localization/GNSS
      • Mapping
      • Off-Highway
      • Robo-Taxis
      • Sensors
      • Shared Mobility
      • Safety
      • Simulation
      • Testing
      • Trucks
      • V2X
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. Subscribe
    Featured
    April 15, 2025

    In this Issue – April 2025

    Online Magazines By Web Team
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    November 29, 2024

    In this Issue – September 2024

    July 23, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Events
  • Awards
    • About
    • Shortlist
    • Judges
LinkedIn Facebook
Subscribe
ADAS & Autonomous Vehicle International
AI & Sensor Fusion

Mimicking ‘eye’ movements could be key to better self-driving cars

Anthony JamesBy Anthony JamesJuly 1, 20223 Mins Read
Share
LinkedIn Twitter Facebook Email

Scientists at Japan’s RIKEN Center for Brain Science (CBS) say they have developed a way to create artificial neural networks that learn to recognize objects faster and more accurately.

Andrea Benucci, team leader at RIKEN CBS’s Laboratory for Neural Circuits and Behavior, has published a study in the scientific journal PLOS Computational Biology, which focuses on all the unnoticed eye movements that we make, and shows that they serve a vital purpose in allowing us to stably recognize objects. These findings can be applied to machine vision, for example, making it easier for self-driving cars to learn how to recognize important features on the road.

Despite making constant head and eye movements throughout the day, objects in the world do not blur or become unrecognizable, even though the physical information hitting our retinas changes constantly. What likely makes this perceptual stability possible are neural copies of the movement commands. These copies are sent throughout the brain each time we move and are thought to allow the brain to account for our own movements and keep our perception stable.

In addition to stable perception, evidence suggests that eye movements, and their motor copies, might also help us to stably recognize objects in the world, but how this happens remains a mystery. Benucci developed a convolutional neural network (CNN) that offers a solution to this problem. The CNN was designed to optimize the classification of objects in a visual scene while the eyes are moving.

First, the network was trained to classify 60,000 black-and-white images into 10 categories. Although it performed well on these images, when tested with shifted images that mimicked naturally altered visual input that would occur when the eyes move, performance dropped drastically to chance level. However, classification improved significantly after training the network with shifted images, as long as the direction and size of the eye movements that resulted in the shift were also included.

In particular, adding the eye movements and their motor copies to the network model allowed the system to better cope with visual noise in the images. “This advancement will help avoid dangerous mistakes in machine vision,” says Benucci. “With more efficient and robust machine vision, it is less likely that pixel alterations—also known as ‘adversarial attacks’—will cause, for example, self-driving cars to label a stop sign as a light pole, or military drones to misclassify a hospital building as an enemy target.”

Bringing these results to real world machine vision is not as difficult as it seems. Benucci explains, “The benefits of mimicking eye movements and their efferent copies implies that ‘forcing’ a machine-vision sensor to have controlled types of movements, while informing the vision network in charge of processing the associated images about the self-generated movements, would make machine vision more robust, and akin to what is experienced in human vision.”

The next step in this research will involve collaboration with colleagues working with neuromorphic technologies. The idea is to implement actual silicon-based circuits based on the principles highlighted in this study and test whether they improve machine-vision capabilities in real-world applications.

Share. Twitter LinkedIn Facebook Email
Previous ArticleSHOW REVIEW: ADAS & Autonomous Vehicle Technology Expo 2022
Next Article New connectivity framework aims to accelerate software-defined vehicle development

Related Posts

Safety

Elektrobit and Metoak partner on SDV safety ecosystem development

May 12, 20252 Mins Read
Videos

WATCH: Riding the Wayve with Sir Richard Branson

May 9, 20251 Min Read
Robo-Taxis

Waymo and Magna to invest in new vehicle factory in Arizona

May 7, 20253 Mins Read
Latest News

Elektrobit and Metoak partner on SDV safety ecosystem development

May 12, 2025

Hyundai Motor and Plus unveil autonomous hydrogen freight ecosystem concept

May 12, 2025

EXPO NEWS: Opens next week!

May 12, 2025
FREE WEEKLY E-NEWSLETTER

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Our Social Channels
  • Facebook
  • LinkedIn
Getting in Touch
  • Free Weekly E-Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
RELATED UKI TOPICS
  • Automotive Interiors
  • Automotive Testing
  • Automotive Powertrain
  • Professional Motorsport
  • Tire Technology
  • Media Pack
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Terms and Conditions
  • Privacy Policy
  • Cookie Policy
  • Notice & Takedown Policy
  • Site FAQs

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT